

## Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

| CANDIDATE<br>NAME |                             |                           |
|-------------------|-----------------------------|---------------------------|
| CENTRE<br>NUMBER  |                             | CANDIDATE<br>NUMBER       |
| CHEMISTRY         |                             | 0620/03                   |
| Paper 3 Theor     | ry (Core)                   | For Examination from 2016 |
| SPECIMEN PA       | APER                        |                           |
|                   |                             | 1 hour 15 minutes         |
| Candidates and    | swer on the Question Paper. |                           |
| No Additional N   | Materials are required.     |                           |

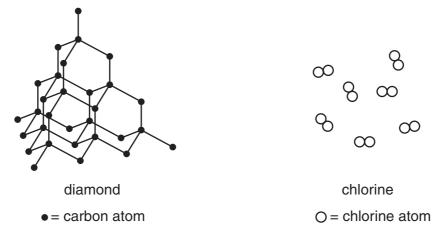
## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

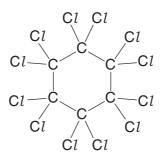
Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 16.


At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 15 printed pages and 1 blank page.




1 The structures of diamond and chlorine are shown below.



(a) Describe the structure of these two substances. Use the list of words to help you.

(b) The structure of a compound containing carbon and chlorine is shown below.



What is the molecular formula of this compound?

[1]

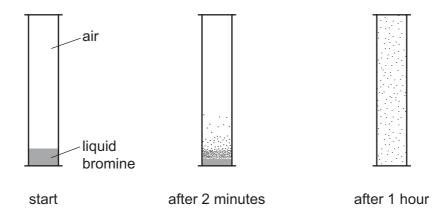
https://xtremepape.rs/

- (c) Chlorine is a halogen.
  - (i) State the colour of chlorine.

[1]

The table shows some properties of the halogens.

(ii) Predict the density of liquid bromine.

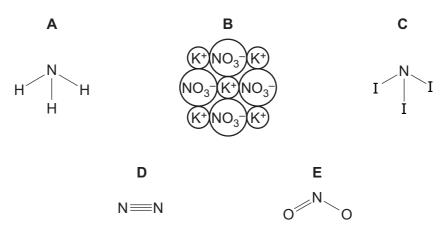

| element  | boiling point/°C | density in liquid state/g per cm <sup>3</sup> | colour     |
|----------|------------------|-----------------------------------------------|------------|
| fluorine | -188             | 1.51                                          | yellow     |
| chlorine | -35              | 1.56                                          |            |
| bromine  | -7               |                                               | red-brown  |
| iodine   | +114             | 4.93                                          | grey-black |

Use the information in the table to answer the following questions.

[1] ..... (iii) Describe the trend in boiling point of the halogens down the group. [1] ..... (d) (i) Complete the word equation for the reaction of bromine with aqueous potassium iodide. [2] ..... (ii) Suggest why bromine does not react with aqueous potassium chloride. [1] ..... (e) Potassium chloride is an ionic substance but iodine is a molecular substance. How do most ionic and molecular substances differ in their solubility in water? electrical conductivity? [2] [Total: 13]

- **2** Bromine is an element in Group VII of the Periodic Table.
  - (a) State the formula for a molecule of bromine.

(b) A teacher placed a small amount of liquid bromine in the bottom of a sealed gas jar of air. After two minutes red-brown fumes were seen just above the liquid surface. After one hour the red-brown colour had spread completely throughout the gas jar.



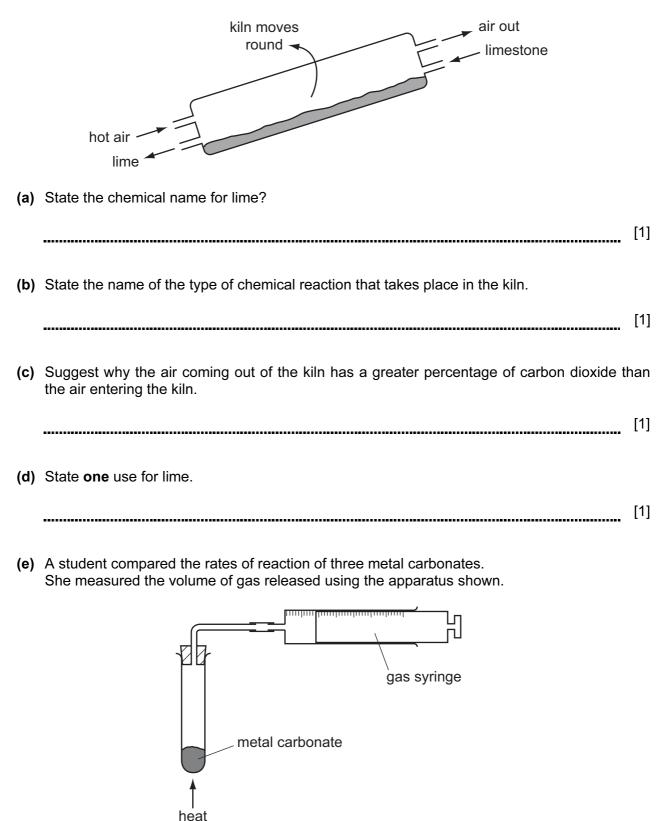

Use the kinetic particle model of matter to explain these observations.

[3]

[Total: 4]

3 The structures of some substances containing nitrogen are shown below.

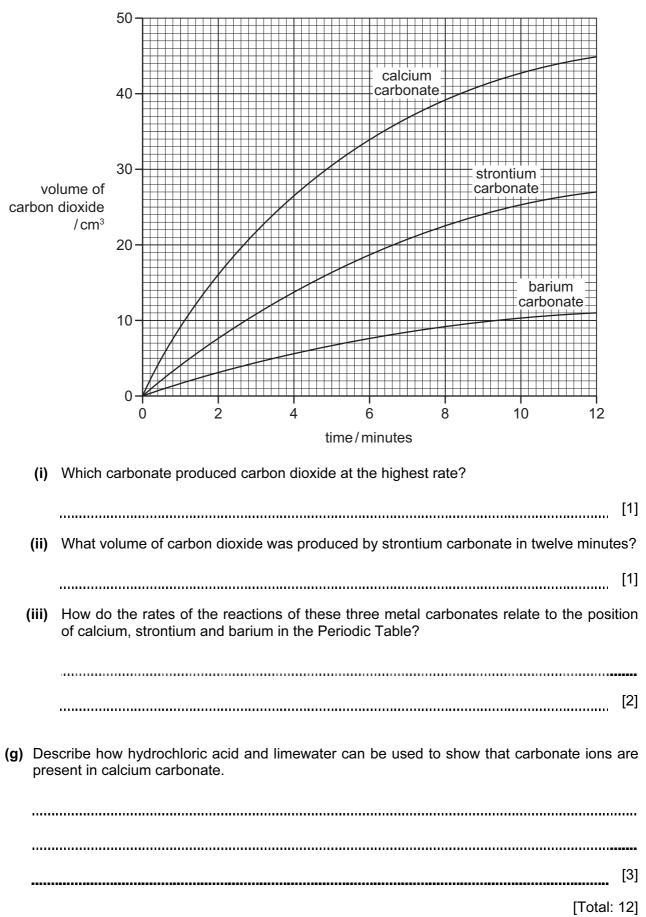



Answer the following questions by choosing from the structures **A**, **B**, **C**, **D** or **E**. You can use each structure once, more than once or not at all.

Which structure represents

| (a) | an acidic oxide,                                                                                | [1] |
|-----|-------------------------------------------------------------------------------------------------|-----|
| (b) | an ionic structure,                                                                             | [1] |
| (c) | a gas which turns damp red litmus paper blue,                                                   | [1] |
| (d) | a compound which is formed under conditions<br>of high temperature and pressure in car engines, | [1] |
| (e) | a molecule containing halogen atoms,                                                            | [1] |
| (f) | a salt?                                                                                         | [1] |
|     |                                                                                                 |     |

[Total: 6]


4 The diagram shows a rotary lime kiln used to make lime from limestone. Limestone is fed in at the top of the kiln and lime comes out at the bottom.



State **one** thing that must be kept constant if the rates of the three reactions are to be compared in a fair way.

[1]

https://xtremepape.rs/



(f) The graph shows the volume of carbon dioxide released when the three metal carbonates were heated.

7

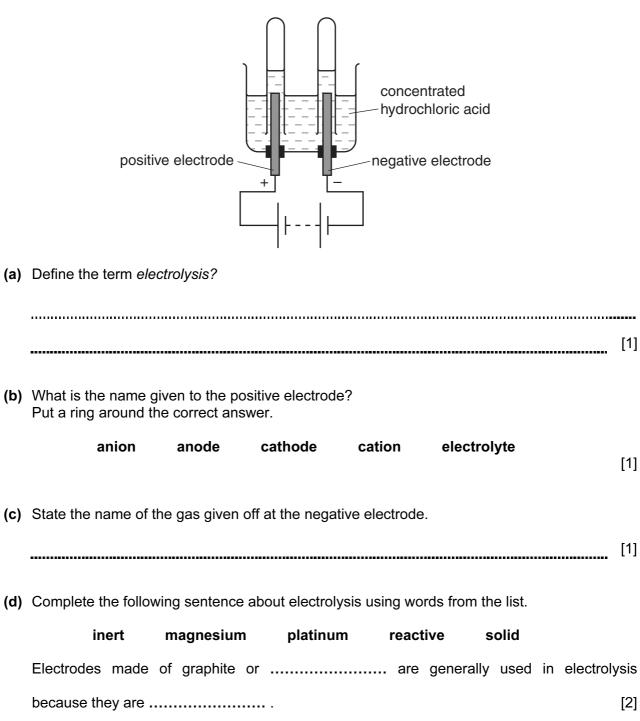
[Turn over

© UCLES 2014

Iron is a transition element. (a) State three properties of transition elements which are not shown by the Group I elements. 1. 2. \_\_\_\_\_ 3. [3] (b) The symbols for two isotopes of iron are shown below. <sup>54</sup>Fe <sup>57</sup><sub>26</sub>Fe (i) How do these two isotopes differ in their atomic structure? [1] ..... (ii) Determine the number of neutrons present in one atom of the isotope  $\frac{57}{26}$  Fe. [1] ..... (iii) Determine the number of electrons in one Fe<sup>3+</sup> ion? [1] ..... (c) Pure iron rusts very easily. Describe and explain one method of preventing rusting. method explain why this method works [2] ..... (d) Iron can be recycled. Explain two advantages of recycling metals. [2] 

https://xtremepape.rs/

5


(e) In the blast furnace, iron(III) oxide reacts with carbon monoxide.

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ 

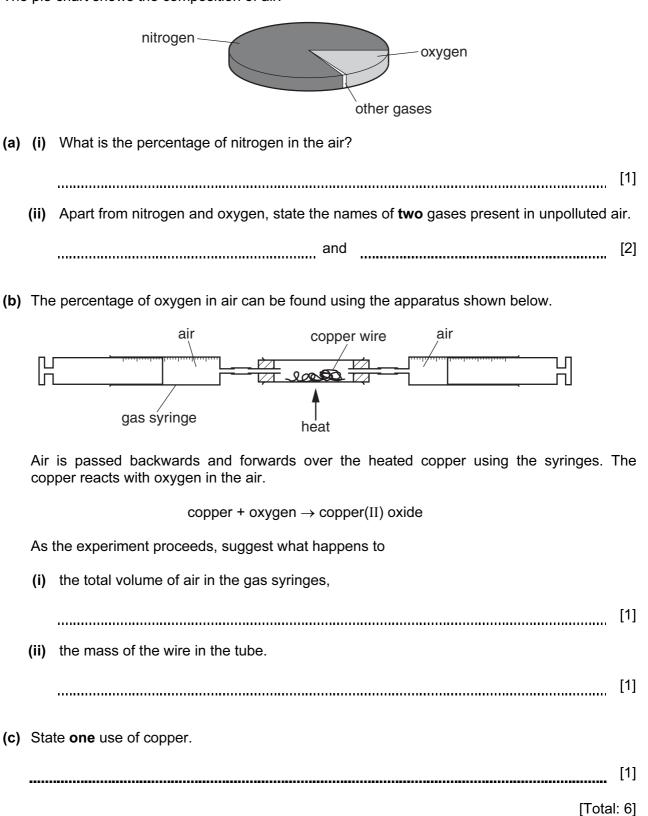
Which substance gets reduced in this reaction? Explain your answer.

|     | sub  | stance                                                                                                    |     |
|-----|------|-----------------------------------------------------------------------------------------------------------|-----|
|     | exp  | lanation                                                                                                  |     |
|     |      |                                                                                                           | [2] |
| (f) | (i)  | Carbon monoxide is a pollutant gas produced in motor car engines.<br>State why carbon monoxide is formed. |     |
|     |      |                                                                                                           | [1] |
|     | (ii) | State <b>one</b> harmful effect of carbon monoxide.                                                       |     |
|     |      |                                                                                                           | [1] |
|     |      | [Total:                                                                                                   | 14] |

6 Concentrated hydrochloric acid can be electrolysed using the apparatus shown.



- (e) When concentrated hydrochloric acid is electrolysed, chlorine is released.
  - (i) Draw the shells and the electronic structure in an atom of chlorine.


[1]

[2]

(ii) Draw the electronic structure of a chlorine molecule. Show only the outer electron shells.

|     | (iii) | Describe a test for chlorine.                                                               |     |
|-----|-------|---------------------------------------------------------------------------------------------|-----|
|     |       | test                                                                                        |     |
|     |       | result                                                                                      | [2] |
| (f) | Нус   | drochloric acid reacts with the base calcium hydroxide.                                     |     |
|     | (i)   | Complete the word equation for this reaction.                                               |     |
|     |       | hydrochloric acid + calcium hydroxide $\rightarrow$                                         |     |
|     |       |                                                                                             | [2] |
|     | (ii)  | Hydrochloric acid also reacts with zinc.<br>Complete the symbol equation for this reaction. |     |
|     |       | $Zn + \dots HCl \rightarrow ZnCl_2 + \dots$                                                 | [2] |
|     |       |                                                                                             | [~] |
|     |       | [Total:                                                                                     | 14] |
|     |       |                                                                                             |     |

7 The pie chart shows the composition of air.



Ethene,  $C_2H_4$ , is manufactured by cracking petroleum fractions.

| (a) | (i)  | What do you understand by the term <i>fraction</i> ?                                                                                    |     |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |      |                                                                                                                                         | [1] |
|     | (ii) | Complete the symbol equation for the manufacture of ethene from dodecane, $C_{12}H_{26}$ .                                              |     |
|     |      | $C_{12}H_{26} \rightarrow C_2H_4 + \dots$                                                                                               | [1] |
| (b) |      | o fractions obtained from the distillation of petroleum are refinery gas and gasoline.<br>te <b>one</b> use of each of these fractions. |     |
|     | refi | nery gas                                                                                                                                |     |
|     | gas  | soline                                                                                                                                  | [2] |
| (c) |      | ene is an unsaturated hydrocarbon.<br>at do you understand by the following terms?                                                      |     |
|     | uns  | aturated                                                                                                                                |     |
|     | hyc  | Irocarbon                                                                                                                               | [2] |
| (d) | Eth  | ene is used to make ethanol.                                                                                                            |     |
|     | (i)  | Which of these reactions is used to make ethanol from ethene?<br>Tick one box.                                                          |     |
|     |      | catalytic addition of steam                                                                                                             |     |
|     |      | fermentation                                                                                                                            |     |
|     |      | oxidation using oxygen                                                                                                                  |     |
|     |      | reduction using hydrogen                                                                                                                | [1] |
|     |      |                                                                                                                                         |     |

[1]

[1]

[1]

[2]

[2]

8

(ii) Draw the structure of ethanol, showing all atoms and bonds.

[2]

| (e) | Complete the  | d to make poly(ethene<br>following sentences a<br>m the list below. | ,               | n.         |            |   |
|-----|---------------|---------------------------------------------------------------------|-----------------|------------|------------|---|
|     | additions     | carbohydrates                                                       | catalysts       | monomers   | polymers   |   |
|     | The ethene m  | olecules which join to                                              | form poly(ether | e) are the |            |   |
|     | The poly(ethe | ·································                                   | [2              | []         |            |   |
|     |               |                                                                     |                 |            | [Total: 11 | ] |

## **BLANK PAGE**

15

|       | VIII | 2 | e<br>He | tiumen<br>4   | 10            | Ne            | reor      | 20                   | 18 | Ar     | argar<br>40      | 36 | ĸ  | hryp.on   | 84 | 54 | Xe       | Xeron             | 131 | 88    | R            | racor         | 10  |        |           |                          |    |             |             |     |     |           |                     |     |                                                                                                   |
|-------|------|---|---------|---------------|---------------|---------------|-----------|----------------------|----|--------|------------------|----|----|-----------|----|----|----------|-------------------|-----|-------|--------------|---------------|-----|--------|-----------|--------------------------|----|-------------|-------------|-----|-----|-----------|---------------------|-----|---------------------------------------------------------------------------------------------------|
|       | VII  |   |         |               | 0             | ĨL.           | funire    | 19                   | 17 | CI     | ct-brine<br>35.5 | 35 | ŭ  | bromino   | 8  | 23 | Ι        | iodir e           | 127 | 85    | At           | astatine      | 2   |        |           |                          | 71 | Lu          | lutejium    | 175 | 103 | 5         | lawrendium          | ſ   |                                                                                                   |
|       | N    |   |         |               | 80            | 0             | uagyson   | 16                   | 16 | S      | sulfur<br>32     | 34 | Se | scionium  | 79 | 52 | Че<br>Це | tellurit.m        | 128 | 똶     | Ро           | polarium      |     | 116    | Ľ         | livennorium              | 02 | ٩۲          | ytterbium   | 173 | 102 | No        | rabelium            | Ę.  |                                                                                                   |
|       | >    |   |         |               | 2             | z             | ritmger   | 14                   | 15 | ٩      | phosphon.s<br>31 | 33 | As | arsunic   | 75 | 5  | Sb       | antimory<br>400   | 122 | 8     | ö            | hismuth       | 209 |        |           |                          | 69 | μ           |             |     |     | ΡW        | mendelevit.m        | ţ   |                                                                                                   |
|       | N    |   |         |               | 9             | U             | carbon    | 12                   | 14 | ي<br>ا | silirar<br>28    | 32 | g  | gormarium | 73 | 50 | S        | ŧ,                | 118 | 82    | Po           | lead          | 207 | 114    | Ц         | flerovium<br>-           | 68 | Ъ           | erbium      | 167 | 100 | Ш         | femiu.m             | Ę   |                                                                                                   |
|       | II   |   |         |               | 5             | B             | harar     | 11                   | 13 | Al     | alumirium<br>27  | 31 | Ga | gallium   |    |    |          | 171               |     |       | Τĩ           | hallium       | 204 |        |           |                          | 67 | Ч           | Polmium     | 165 | 66  | Es        | eirsteinium         | Ē   |                                                                                                   |
|       |      |   |         |               |               |               |           |                      |    |        |                  | 30 | Zn | áiic      | 65 | 48 | 8        | osdmit.m          | 112 | 80    | Ê            | mercury       | 201 | 112    | ວົ        | copen <sup>-</sup> icium | 99 | D<br>V      | cysprosium  | 163 | 98  | ç         | californium         | Û   |                                                                                                   |
|       |      |   |         |               |               |               |           |                      |    |        |                  | 29 | G  | cupper    |    |    | Ag       |                   |     |       | Au           | <u>colo</u>   | 197 | 111    | Вg        | camisischium mentgerium  | 66 | μ           | terbium     | 159 | 26  | BĶ        | herkelium           | t   |                                                                                                   |
| Group |      |   |         |               |               |               |           |                      |    |        |                  | 28 | ïz | rickel    | 59 | 46 | Рd       | pelledium<br>- 20 | 106 | 78    | đ            | pletirum      | 195 | 110    | S         | camistactium             | 64 | Ъд          | gadolirium  | 157 | 96  | Cm        | curium              | ļ.  | (r.t.p.)                                                                                          |
| SG    |      | 2 |         |               |               |               |           |                      |    |        |                  | 27 | ပိ | coball    |    |    |          |                   |     |       | L            | iridium       | 192 | 109    | Mt        | meitnentum               | 63 | Ш           | europium    | 152 | 95  | Am        | americium           | Ę   | pressure                                                                                          |
|       |      | 1 | I j     | nyaragen<br>1 |               |               |           |                      |    |        |                  | 26 | Fe | iron      | 56 | 4  | Ru       | rutherium         | 101 | 76    | ő            | nsmit.m       | 190 | 108    | Я         | hessium                  | 62 |             | รลทธทีมก    |     | 94  | Pu        | plutarium           | Ę   | ure and p                                                                                         |
|       |      |   |         |               |               |               |           |                      |    |        |                  | 25 | Mn | marganese | 55 | 43 | Ч        | ted netium        |     | 75    | Re           | menit.m       | 186 | 107    | Bh        | hơi rù. m                | 61 | Pm          | promethium  | 122 | 93  | Np        | reptunium           | Ę   | temperat                                                                                          |
|       |      |   |         |               | er            | pol           |           | nass                 |    |        |                  | 24 | ç  | chromitum | 52 | 42 | Мо       | molybderum        | 38  | 74    | M            | tung sten     | 184 | 106    | Sg        | sechorgium               | 89 | PN          | reodymium   | 144 | 92  | ∍         | uranium             | 730 | at room                                                                                           |
|       |      |   |         | Key           | atomic number | atomic symbol | rsne      | relative atomic mass |    |        |                  | 33 | ٨  | varedium  | চ  | দ  | qN       | r inbit.m         | 3   | 13    | Ta           | tanfalum      | 181 | 105    | qO        | mirdub                   | 63 | Pr          | presedymium | 141 | 61  | Pa        | protaciinium<br>194 | 231 | is 24 dm <sup>3</sup>                                                                             |
|       |      |   |         |               | at            | ato           |           | relati               |    |        |                  | 22 | F  | li.arium  | 48 | 40 | Zr       | zirear ium        | 5   | 72    | Ŧ            | hafnium<br>Ta | 1/8 | 104    | ጿ         | ncherforcium             | 58 | 0e          | cerit.m     | 140 | 90  | Пh        | tharium             | 797 | any gas                                                                                           |
|       |      |   |         |               |               |               |           |                      |    |        |                  | 21 | Sc | scandium  | 45 | 39 | ≻        | ythium            | 52  | 57 71 | lanthar vice |               |     | 89 103 | actinoids |                          | 57 | La          | larth ar um | 139 | 89  | Ac        | schrium             | Ŭ   | The volume of one mole of any gas is 24 dm <sup>3</sup> at room temperature and pressure (r.t.p.) |
|       | =    |   |         |               | 4             | Be            | heryllium | 9                    | 12 | Mg     | magnesium<br>24  | 20 | Ca | calcium   | 40 | g  | ა        | strortium         | 33  | 56    | Ba           | barium        | 13/ | 88     | Ra        | radium                   |    | ds          |             |     |     |           |                     | _   | ne of one                                                                                         |
|       | _    |   |         |               | e             |               | lithium   | 7                    | 11 |        | sncium<br>23     | 19 | Y  | pu.assium | 89 | 37 | ዊ        | n.bicium<br>or    | 2   | \$    | ő            | csesium       | 133 | 87     | ኪ         | francium                 |    | lanthanoids |             |     |     | actinoids |                     |     | The volu                                                                                          |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014